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A B S T R A C T   

Chalkiness is a major concern in rice production and its acceptance and is increased by shade stress. However, 
the relationship between rice chalkiness and the structural and thermal properties of starch is unclear. Here, we 
investigated the effect of shade stress on rice starch properties. The chalky grain rate and chalkiness degree 
significantly decreased with the amylose content, Mn, and ΔH and increased with surface area- and volume- 
weighted mean diameters, branching degree, ratio of 1022/995 cm− 1, and molecular weight polydispersity. 
Shade stress significantly increased the volume- and surface area-weighted mean diameters and Mw and 
decreased the amylose content, A chain proportion of amylopectin, Mn, and regularity of starch. These effects led 
to an increase in the molecular weight polydispersity and branching degree and a decrease in the crystallinity 
degree and 1045/1022 cm− 1 ratio, thereby reducing starch ΔH and uniformity. These factors contributed to 
increased chalkiness of rice under shade stress.   

1. Introduction 

Rice is a staple crop that serves as the main carbohydrate source for 
more than half of the world population, with approximately 500 million 
tons of milled rice produced annually (Tao, Yu, Prakash, & Gilbert, 
2019). Rice quality is controlled by the physicochemical characteristics 
of grains that provide specific uses for customers (Deng et al., 2018; 
Wangcharoen et al., 2016). As the major form of stored carbohydrate in 
the endosperm, starch accounts up to 90 % of the dry weight and plays a 
key role in determining the grain quality of rice (Bao et al., 2020; Fitz
gerald, Mccouch, & Hall, 2009; Zhang et al., 2020). 

Wangcharoen et al. (2016) have suggested that rice quality is 
negatively associated with amylose content and textural characteristics 
such as hardness. Functional characteristics such as the thermal and 
viscosity properties of starch are closely associated with rice texture 
quality (Lee, Lee, & Chung, 2017; Singh, Pal, Mahajan, Singh, & Shev
kani, 2011; Wang, Deng, Ren, & Yang, 2013). Additionally, the 

functional properties of rice are based on starch molecular structural 
parameters (Bao et al., 2020; Cai et al., 2015). For example, the pasting, 
gelatinization, and retrogradation properties of starch are closely asso
ciated with the branch chain-length distribution of amylopectin (Jane, 
Chen, Lee, Mcpherson, & Kasemsuwan, 1999; Lee et al., 2017; Zhou 
et al., 2020). However, the structural and physicochemical starch 
properties of cereal grains differ under varying environmental condi
tions (Almeida, Batista, Di-Medeiros, Moraes, & Fernandes, 2019; Lu, 
Sun, Wang, Yan, & Lu, 2013; Shi, Gu, Lu, & Lu, 2018; Singh et al., 2011). 

A 4%–6% general decrease in sunlight over land surfaces has 
occurred from 1960 to 1990 (Wild, Gilgen, Roesch, Ohmura, & Tsvet
kov, 2005). Known as global dimming and low light, shade stress has 
been an ongoing worldwide phenomenon for the past few decades, with 
climate change and environment pollution strongly impacting both crop 
yield and quality (Gommers, Visser, St Onge, Voesenek, & Pierik, 2013; 
Shao et al., 2020). It is estimated that heavy haze and aerosol pollution 
may further decrease solar irradiance by 28 %–49 % (Tie et al., 2016). 

Abbreviations: A, short chain; B1, middle chain; B2, long chain; B3, very long chain; d(0.1), d(0.5), and d(0.9) represent granule sizes at the 10th percentile, 
median, and 90th percentile by volume, respectively; Mn, number average molecular weight; Mp, peak molecular weight; Mw, weight average molecular weight; Mz, 
Z average molecular weight; Tc, conclusion temperature; To, onset temperature; Tp, peak temperature; ΔH, gelatinization enthalpy. 
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The Sichuan basin is a representative rice production region with low 
light intensity, and rice plants in this region experience shade stress 
caused by rainy and cloudy conditions that occur during the grain-filling 
stage (July to September). This leads to decreased photosynthate pro
duction in the leaf lamina that arises due to reduction of the net 
photosynthetic rate, electron transport rate, and photochemical effi
ciency (Dai et al., 2009; Wang, Deng, & Ren, 2015), as well as decrease 
in the chlorophyll a/b ratio and key enzyme activities in photosynthesis 
(e.g. phosphoenolpyruvate carboxylase) (Jia, Li, Dong, & Zhang, 2010). 
Shade stress inhibits the development of rice amyloplasts by reducing 
the activities of starch synthesis enzymes (e.g. granule bound starch 
synthase and soluble starch synthase) (Li, Ryu, Tohru, & Haruto, 2005); 
this results in decreased starch and amylose content and short chains of 
amylopectin but increases amylopectin long chains and variation in 
starch viscosity (Deng et al., 2018; Wang et al., 2013). 

A major quality concern affecting the production and acceptance of 
rice is chalkiness, which is caused by deficient amyloplast development 
and by increased interspaces between loosely packed starch granules 
and leads to a decrease in the milling and texture qualities of rice (Ish
imaru et al., 2009; Yoshioka, Iwata, Tabata, Ninomiya, & Ohsawa, 
2007). Previous studies demonstrated that shade stress significantly 
increased the chalkiness of rice (Deng et al., 2018; Ren, Yang, Xu, Fan, & 
Ma, 2003). However, the effect of shade stress on the structural and 
thermal characteristics of starch and their relationship with rice chalk
iness remains unclear. We hypothesized that shade stress during the 
grain-filling stage increases rice chalkiness by reforming starch granule 
size and the fine structure of rice. 

Therefore, a field light control experiment (rice grain grown under 
full sunlight and 53 % shade stress) was conducted in Hanyuan and 
Wenjiang, Sichuan, China. The main objectives of this study were to 
evaluate the effect of shade stress on the (a) fine structural properties of 
rice starch granules, (b) thermal properties of rice starch, and (c) their 
respective relationships with chalkiness. Our findings provide informa
tion for efficiently utilizing rice starch and decreasing rice chalkiness in 
regions affected by shade stress. 

2. Materials and methods 

2.1. Plant materials and experimental design 

Field experiments with three replicates were conducted in Liujia 
village (29◦29′N, 102◦37′E), Hanyuan county and Huihe village 
(30◦43′N, 103◦52′E), Wenjiang district, Sichuan province, China in 
2018 and 2019. The climatic data and soil properties from trans
plantation to maturity are shown in Table 1 (Li et al., 2020). The elite 
Chinese bread indica rice variety, Huanghuazhan, was used as it is 
broadly adaptable, has a high yield potential and quality, and is widely 
cultivated in China. Seedlings were raised in a seedbed for 30 days, then 
two plants were transplanted per hill and spaced 33.3 × 20.0 cm apart. 
Control plants were not shaded. A 30-day shade stress treatment was 
applied to the test groups after the heading stage using a single layer of 
white cotton yarn screen. The screen was placed 0.5 m above the rice 
canopy to provide good ventilation and block approximately 53 % of the 
solar radiation (Deng et al., 2018). The dimensions of each plot were 4.0 

× 4.0 m2 (2018) and 3.0 × 8.0 m2 (2019) in Hanyuan and 3.0 × 10.0 m2 

in Wenjiang. Approximately 2 kg of rice grain was randomly sampled 
from each plot, at the maturity stage, for observing the chalkiness over 
the two years and determining the starch properties in 2019. 

2.2. Determination of chalky grain rate, chalkiness degree, and protein 
and starch contents of head rice 

The head rice chalky grain rate and chalkiness degree were measured 
with three replicates using a JMWT12 rice appearance quality tester 
(Dongfujiuheng Instrument Technology Co., Ltd., Beijing, China). The 
chalky grain rate and chalkiness degree were calculated as follows:  

Chalky grain rate (%) = Number of chalky grains/Number of observed grains ×
100                                                                                               (1)  

Chalkiness degree (%) = Chalky area/ Total area of observed grains × 100(2) 

Protein content was measured from the total nitrogen content of 
head rice with a conversion index of 5.95 following the protocol of Tao 
et al. (2019). Starch content was measured following the method 
described by Shi et al. (2018). 

2.3. Starch isolation 

Three starch samples from each treatment were isolated according to 
the method previously described by Lu and Lu (2012), with minor 
modifications. Head rice (20 g, 13.5 % moisture content) was soaked in 
100 mL of ultrapure water containing sodium metabisulfite and 10 mg 
g− 1 alkaline protease at 42℃ for 24 h. The samples were homogenized 
with a blender and sifted using a 200-mesh sieve. The slurry was 
collected and allowed to stand for 12 h. This step was repeated 5–8 times 
until the settled starch layer was purified. The starch samples were 
collected and naturally dried. Moisture content was then equalized in a 
thermotank at 37℃ for 7 days. Samples were stored at room tempera
ture until further use. 

2.4. Determination of amylose and amylopectin contents 

Amylose and amylopectin contents of starch samples were measured 
according to the method described by Shi et al. (2018). Amylopectin 
content was calculated as the difference between the starch and amylose 
contents. 

2.5. Determination of starch granule morphology 

Starch granule morphology was imaged based on the protocol 
described by Zhou et al. (2020). Samples (100 mg) were mounted on a 
metal stub, covered with gold, and then observed and photographed 
with a Zeiss Merlin Compact scanning electron microscope (SEM, Zeiss, 
Oberkochen, Germany). 

2.6. Determination of granule size 

One hundred milligram starch samples were ultrasonically blended 

Table 1 
Climate data and soil properties from transplanting to maturity.  

Year Mean 
temperature 
(℃) 

Precipitation 
(mm) 

Solar 
radiation 
(MJ m− 2) 

Organic 
matter 
(g kg–1) 

Total 
nitrogen 
(g kg–1) 

Total 
phosphorus 
(g kg–1) 

Total 
potassium 
(g kg–1) 

Hanyuan 
2018 21.0 403 1375 25.5 2.20 1.62 28.1 
2019 21.3 314 1583 36.5 1.89 1.33 29.2 
Wenjiang 
2018 24.4 633 1041 28.5 1.50 0.94 17.5 
2019 24.0 332 1093 29.9 1.47 1.04 16.4  
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in 1 mL of 75 % alcohol. Granule size was estimated using a Mastersizer 
3000 laser diffraction particle size analyzer (Malvern Instruments Ltd., 
Worcestershire, UK) at a range of 0.1–3500 μm. The number-, volume-, 
and surface-weighted mean diameters, and the 10th percentile (d(0.1)), 
median (d(0.5)), and 90th percentile (d(0.9)) of volume were calculated 
following the protocol previously described by Lin et al. (2016). 

2.7. Analysis of X-ray diffraction (XRD) pattern and branching degree 

Starch samples (100 mg) were scanned with an X’Pert Pro X-ray 
diffractometer (PANalytical, Almelo, Netherlands) to determine XRD. 
CuK α was used as the X-ray source with 0.154-nm filtered radiation. A 
100-mg sample was scanned at scattering angles of 5◦–60◦ (2θ) using a 
scanning rate of 4◦ min− 1. Crystallinity degree was calculated using the 
MDI-Jade 5.0 software (Material Data, Inc., Livermore, CA, USA). A 
Bruker BioSpin GmbH NMR spectrometer (Bruker, Rheinstetten, Ger
many) was used to determine the branching degree of starch samples. 

2.8. Determination of branch chain-length distribution 

The branch chain-length distribution of amylopectin was measured 
with an ICS-5000 high-performance anion-exchange chromatograph 
(Thermo Fisher Scientific, Waltham, MA, USA) using a Dionex™ Car
boPac™ PA10 anion-exchange column according to the method 
described by Li et al. (2019). 

2.9. Fourier transform infrared (FTIR) spectrum measurements 

Starch Fourier transform infrared spectra were scanned using a 
Nicolet iZ-10 FTIR instrument (Thermo Fisher Scientific). Starch sam
ples (5 mg) were mixed with 250 mg KBr and pressed into film-coated 
tablets. The KBr was considered as the background of the tablet. 
Wavenumbers from 400 to 4000 cm− 1 were measured at 4 cm− 1 spectral 
resolution over 32 scans. 

2.10. Molecular weight distribution analysis 

According to the method described by Zou, Xu, Wen, and Yang 
(2020)), starch molecular weight was measured using a gel permeation 
chromatography-refractive index-multiangle laser light scattering de
tector (GPC-RI-MALLS) with Optilab Trex (Wyatt, Santa Barbara, CA, 
USA) and DAWN HELEOSII (Wyatt, Santa Barbara, CA, USA). The data 
were analyzed with the Astra version 6.1 software (Wyatt, Santa Bar
bara, CA, USA). 

2.11. Measurement of thermal properties 

Starch thermal properties were determined using a Q2000 differen
tial scanning calorimeter (TA Instruments, New Castle, DE, USA) 
following the protocol previously described by Gong et al. (2017). A 
10-mg starch sample and 30 μL of deionized water were weighed into a 
DSC pan which was hermetically sealed and balanced at room temper
ature for 24 h. Then, the sample was heated from 30 ◦C to 95 ◦C at a rate 
of 10 ◦C min− 1. The data were analyzed using the Universal Analysis 
software (TA Instruments, New Castle, DE, USA). 

2.12. Statistical analysis 

Two-way analysis of variance was used to analyze the data with SPSS 
version 18.0 (SPSS, Inc., Chicago, IL, USA). The least significant differ
ence (P = 0.05) was used to measure the difference between the means 
of each treatment. Figures were drawn using GraphPad Prism 5.0 
(GraphPad Software, Inc., CA, USA). 

3. Results and discussion 

3.1. Effect of shade stress on rice chalkiness 

Both chalky grain rate and chalkiness of head rice are shown in 
Fig. 1A and B. Consistent with previous studies (Deng et al., 2018; Ren 
et al., 2003), shade stress significantly increased both the chalky grain 
rate and chalkiness in both 2018 and 2019. Chalky grain rate (183 %– 
201 % and 131 %–132 %) and chalkiness (378 %–820 % and 184 %–193 
%) increased in both Hanyuan and Wenjiang, respectively. 

3.2. Effect of shade stress on protein, amylose, amylopectin, and starch 
contents 

Shade stress significantly increased the head rice protein content 
(Fig. 1C). Consistent with the results reported by Deng et al. (2018), 
more protein was observed in endosperm grown under shade stress. 
Shade stress applied after the heading stage significantly increased the 
amylopectin content while decreasing the amylose content of starch and 
the starch content of head rice (Fig. 1D, E, and F). Similar results have 
been demonstrated for cereal crops, such as maize (Lu et al., 2013; Shi 
et al., 2018), wheat (Liu, Zhang, Li, Zhang, & Cai, 2017), and rice (Wang 
et al., 2013) and may result from lower starch synthesis enzyme activ
ities caused by an insufficient sucrose supply from the leaf lamina (Jia 
et al., 2010; Li et al., 2005; Wang et al., 2015). Reduction in amylose 
content, therefore, contributed to the increased chalkiness (Zhao et al., 
2019). 

3.3. Effect of shade stress on the structural properties of rice starch 

3.3.1. Starch granule morphology 
The morphological characteristics of starch granules vary according 

to starch source and environmental stress (Almeida et al., 2019; Gong 
et al., 2017; Shi et al., 2018; Wani et al., 2012). In the current study, the 
morphological characteristics of extracted starches were evaluated by 
SEM and the micrographs have been shown in Fig. 2. The morphology of 
control starch granules from both sites showed irregular and polyhedral 
shapes with edges and sharp angles. Most starch granules produced 
under shade stress possessed a morphology similar to that of the control 
samples. However, rice granule uniformity was decreased by shade 
stress; some round or oval granules were observed. Additionally, shade 
stress also increased the number of pinholes on the smooth surface of the 
starch. These may be because of the delayed development of the endo
sperm and amyloplasts (Deng et al., 2018) and may contribute to 
increased chalkiness under shade stress. 

3.3.2. Size distribution of starch granules 
Different climate and agronomic processing conditions that cause 

natural variability in amylose and amylopectin formation may 
contribute to granule size diversity (Ma, Wang, Wang, Jane, & Du, 2017; 
Wani et al., 2012; Zou et al., 2020). The effects of shade stress on the 
granule size distribution characteristics of starch are presented in Fig. 3 
and Table 2. Generally, the number, volume, and surface area distri
butions of starch granules displayed a unimodal trend with peaks at 
approximately 3.5, 6.0, and 5.0 μm, respectively. Shade stress signifi
cantly increased both volume- and surface area-weighted mean di
ameters, along with d(0.5) and d(0.9), in both sites while decreasing the 
number-weighted mean diameter of starch in Wenjiang. This indicated 
that the development of existing starch granules was restricted by shade 
stress (Shi et al., 2018). In general, control treatments showed higher 
number, volume, and surface area size distribution percentage of gran
ules from 3.5 to 8.5 μm, whereas shade stress increased the percentage of 
granules with a size distribution below 3.5 μm and above 8.5 μm. These 
results suggested that starch granule regularity was decreased by shade 
stress, which might contribute to increased rice chalkiness. 

F. Deng et al.                                                                                                                                                                                                                                    
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3.3.3. Crystallinity and branching degree 
The highly ordered crystalline structure is conferred by the intra- and 

inter-molecular hydrogen bonds of starch (Garg & Jana, 2011). There
fore, XRD is recommended as an effective method for determination of 
the crystal structure of starch (Almeida et al., 2019). All samples in the 
current study displayed typical A-type diffraction patterns (Fig. 4A and 
B), suggesting that shade stress did not alter the polymorphic structure 
type of rice starch. Crystallinity degree calculated from the XRD patterns 
is shown in Table 2. Shade stress significantly decreased the stability of 
rice starch crystals, probably due to the reduction in short chains that 
form the crystalline zone of starch (Zhu & Liu, 2020). However, the 
reduction in crystallinity degree was higher in samples from Wenjiang 
(10.2 %) than in those from Hanyuan (7.34 %), which may be attributed 
to the different climatic conditions. Furthermore, shade stress signifi
cantly increased the branching degree in both sites, likely because of the 
decreased short chain, but increased long chains proportion of amylo
pectin (Table 3), which can be used to predict the extent of amylopectin 
branching (Deng et al., 2018; Zhang, Zhu, Shao, Gu, & Liu, 2013). 
Therefore, shade stress decreased the crystallinity degree but increased 
the branching degree, thereby contributing to the increased chalkiness. 

3.3.4. Fourier transform infrared spectrum 
The 1045/1022 and 1022/995 cm− 1 ratios are important in the FTIR 

spectrum of starch, in which peaks at the 1045 and 1022 cm− 1 respec
tively represent the crystalline and amorphous regions (Zhang et al., 
2020; Zou et al., 2020). Thus, the ratios of 1045/1022 and 1022/995 
cm− 1, respectively, have been used to estimate the internal changes of 
the order degree and formation of double helix of starch molecules 
(Zhou et al., 2020). The transmittance-FTIR spectra of rice starch are 
shown in Fig. 4C, and the 1045/1022 and 1022/995 cm-1 ratios are 
shown in Table 2. Similar absorption peaks were observed under control 
and shade stress treatments in both sites, suggesting that shade stress did 
not lead to new groups. The results of Almeida et al. (2019) suggested 

that a high amylose content led to a high 1045/1022 cm-1 ratio but a low 
1022/995 cm− 1 ratio. Moreover, shade stress significantly reduced the 
1045/1022 cm− 1 ratio but increased the 1022/995 cm− 1 ratio, which 
agreed with the lower crystallinity degree inferred from our XRD results 
(Table 2). The 1045/1022 cm− 1 ratio significantly increases with the 
crystallinity degree and amylopectin short branch chain (Cai et al., 
2015). 

3.3.5. Starch granule molecular weight 
Information on the molecular weight of starch is shown in Table 3 

and Fig. 5A and B. Shade stress significantly increased the Mw, Mz, and 
Mp of rice starch in both sites, in agreement with the decreased A chain 
proportion and increased long chains proportion of amylopectin 
(Table 3). Polydispersity, a measure of the broadness of the molecular 
weight distribution, can be calculated as the ratio of Mw/Mn and Mz/ 
Mn (Cai et al., 2015; Hu et al., 2020). A lower polydispersity indicates a 
narrower molecular weight distribution of starch (Zou et al., 2020). In 
this study, shade stress significantly increased Mw/Mn and Mz/ Mn in 
both study sites. Greater molecular weight distribution may restrain the 
crystallization of amylose (Hu et al., 2020). Therefore, shade stress led to 
a reduced crystallinity degree of rice starch in both sites, which agreed 
with the reduced regularity of starch granules shown in Fig. 3. 

3.4. Effect of shade stress on the thermal properties of rice starch 

As an endothermic transition of starch, gelatinization corresponds to 
the dissociation of the double helical order of amylopectin as it changes 
to an amorphous conformation from a semi-crystalline structure (Li, He, 
Dhital, Zhang, & Huang, 2017), in which the transition temperatures 
represent the double helical order and ΔH reflects its content (Cooke & 
Gidley, 1992; Gong et al., 2017). The thermal characteristics of rice 
starch calculated from the DSC analysis (Fig. 5C and D) are shown in 
Table 4. The To, Tp, Tc, and ΔH were 62.0 ℃–63.5 ℃, 67.1 ℃–68.4 ℃, 

Fig. 1. Effect of shade stress on chalky grain rate (A), chalkiness degree (B), protein (C) and starch (D) contents of rice, and amylose (E) and amylopectin (F) contents 
of starch. Mean ± SD with similar lowercase letters did not differ significantly at p = 0.05 when compared to the control. 

F. Deng et al.                                                                                                                                                                                                                                    
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72.7 ℃–73.8 ℃, and 10.0–11.7 J g− 1, respectively. Shade stress 
significantly decreased the Tp in Hanyuan and ΔH and To in both study 
sites compared to the controls. The decrease in transition temperatures 
suggested that a lower temperature was required to disrupt the double 
helical order, while the decrease in ΔH indicated a reduction in the 
crystallinity degree of starch by decreasing the double helical order 
content (Almeida et al., 2019; Gong et al., 2017). This may be because of 
the decrease in amylose content and A chain proportion of amylopectin 
that occurred under shade stress, thereby contributing to decreased 
thermal stability of starch (Shi et al., 2018). 

3.5. Relationship between chalkiness and structural and thermal 
properties of rice starch 

Chalkiness, the white opaque portion of rice endosperm, is regulated 
by the synthesis of starch, as well as the fine structure and arrangement 
of the starch granule (Deng et al., 2018; Ishimaru et al., 2009). We found 
that rice chalkiness was closely related to the structural and thermal 
properties of starch. Both chalky grain rate and chalkiness degree were 
significantly and negatively correlated to the amylose content, Mn, and 
ΔH, and significantly increased with increasing amylopectin content, 
surface area- and volume-weighted mean diameters, d(0.5), d(0.9), 
branching degree, ratio of 1022/995 cm− 1, Mw/Mn, and Mz/Mn 
(Table 5). This was in agreement with the results reported by Deng et al. 
(2018), who suggested that shade stress increased rice chalkiness by 
impeding caryopsis development and regulating the starch characteris
tics of rice. Zhao et al. (2019) demonstrated that the increased longer 
chain proportion of amylopectin but reduced amylose content and short 
chain proportion of amylopectin contributed to the increase in 

chalkiness of rice. The chalky grain rate was significantly decreased with 
starch content, crystallinity degree, ratio of 1045/1022 cm− 1, and A 
chain proportion of amylopectin, whereas the chalkiness degree was 
increased with B3 chain proportion of amylopectin. These findings 
indicated that increase in regularity of starch is important for controlling 
chalkiness; considerably large starch granules adversely affect the 
reduction of chalkiness. 

4. Conclusions 

An analysis of the changes in the structural and thermal properties of 
rice starch is indispensable to understand the mechanism by which 
shade stress increases rice chalkiness. We compared the multi-scale 
structural properties, as well as the thermal characteristics of rice 
starch under shade stress with full sunlight control. The results showed 
that chalkiness was closely related to the amylose content, surface area- 
and volume-weighted mean diameters, d(0.5), d(0.9), branching degree, 
ratio of 1022/995 cm− 1, Mn, Mw/Mn, Mz/Mn, and ΔH. Shade stress 
significantly increased the amylopectin content, surface area- and 
volume-weighted mean diameters, and Mw, but decreased the amylose 
content, A chain proportion of amylopectin, and Mn, as well as the 
regularity of starch granules. These effects contributed to the increased 
Mw/Mn, Mz/Mn, and branching degree and decreased crystallinity 
degree and 1045/1022 cm− 1 ratio of rice starch, thereby reducing ΔH 
and starch uniformity. Therefore, the chalkiness of head rice was 
significantly increased by shade stress. Our results provide useful 
guidance for improving rice grain quality in low-light regions. 

Fig. 2. Scanning electron microscope photographs of starch granules from control (A and C) and shade stress (B and D) grown in Hanyuan (A and B) and Wenjiang (C 
and D). 
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Fig. 3. Effect of shade stress on the number (A), volume (B), and surface area 
(C) distribution of rice starch granules. 

Table 2 
Effect of shade stress on the granule diameter, degree of crystallinity and branching, and ratio of 1045/1022 and 1022/995 cm− 1 of rice starch.  

Treatment Number 
weighted 
mean 
diameter 
(μm) 

Volume 
weighted 
mean 
diameter 
(μm) 

Surface area 
weightedmean 
diameter (μm) 

d(0.1) d(0.5) d(0.9) Crystallinity 
degree (%) 

Branching 
degree (%) 

Ratio of 1045/ 
1022 cm− 1 

Ratio of 
1022/995 
cm− 1 

Hanyuan 
Control 4.29 ± 0.01a 6.88 ± 0.29b 5.99 ± 0.38b 3.97 ±

0.02a 
6.94 ±
0.29b 

14.3 ±
0.48b 

35.4 ± 0.49a 3.85 ± 0.09b 0.86 ± 0.00a 1.22 ± 0.00b 

Shade 4.22 ± 0.05a 7.26 ± 0.17a 6.54 ± 0.04a 3.99 ±
0.04a 

7.46 ±
0.03a 

27.6 ±
2.98a 

32.8 ± 1.42b 4.17 ± 0.14a 0.85 ± 0.00b 1.25 ± 0.01a 

Wenjiang 
Control 4.48 ± 0.03a 6.76 ± 0.09b 5.85 ± 0.04b 4.08 ±

0.03a 
6.79 ±
0.02b 

11.7 ±
0.46b 

38.4 ± 0.60a 4.17 ± 0.05b 0.87 ± 0.01a 1.23 ± 0.00b 

Shade 4.30 ± 0.15b 7.38 ± 0.14a 6.51 ± 0.03a 4.03 ±
0.10a 

7.43 ±
0.05a 

21.8 ±
3.19a 

34.5 ± 0.25b 4.26 ± 0.05a 0.84 ± 0.01b 1.24 ± 0.01a  

Fig. 4. Effect of shade stress on XRD patterns (A and B) and transmittance-FTIR 
spectra of rice starch (C). 
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