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Abstract 29 

Carotenoid is a tetraterpene pigment beneficial for human health. Although the 30 

carotenoid biosynthesis pathway has been extensively studied in plants, relatively 31 

little is known about their regulation in sweet potato. Previously, we conducted the 32 

transcriptome database of differentially expressed genes between the sweet potato 33 

(Ipomoea batatas) cultivar “Weiduoli” and its high-carotenoid mutant "HVB-3". In this 34 

study, we selected one of these candidate genes, IbNAC29, for subsequent 35 

analyses. IbNAC29 belongs to the plant-specific NAC (NAM, ATAF1/2, and CUC2) 36 

transcription factor family. Relative IbNAC29 mRNA level in the HVB-3 storage roots 37 

was ~1.71- fold higher than Weiduoli. Additional experiments showed that the 38 

contents of α-carotene, lutein, β-carotene, zeaxanthin, and capsanthin are obviously 39 

increased in the storage roots of transgenic sweet potato plants overexpressing 40 

IbNAC29. Moreover, the levels of carotenoid biosynthesis genes in transgenic plants 41 

were also up-regulated. Nevertheless, yeast one-hybrid assays indicated that 42 

IbNAC29 could not directly bind to the promoters of these carotenoid biosynthesis 43 

genes. Furthermore, the level of IbSGR1 was down-regulated, whose homologous 44 

genes in tomato can negatively regulate carotene accumulation. Yeast three-hybrid 45 

analysis revealed that the IbNAC29-IbMYB1R1-IbAITR5 could form a regulatory 46 

module. Yeast one-hybrid, electrophoretic mobility shift assay, quantitative PCR 47 

analysis of chromatin immunoprecipitation and dual-luciferase reporter assay showed 48 

that IbAITR5 directly binds to and inhibits the promoter activity of IbSGR1, up-49 

regulating carotenoid biosynthesis gene IbPSY. Taken together, IbNAC29 is a 50 

potential candidate gene for the genetic improvement of nutritive value in sweet 51 

potato.  52 
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Introduction 54 

Carotenoids are pigments, widely distributed in nature, and are divided into two 55 

groups: 1) carotenes including lycopene and α/β/γ-carotene, and 2) xanthophyll like 56 

lutein, zeaxanthin, and violaxanthin1. Over 750 natural carotenoids have been found 57 

in plants, algae, fungi, and bacteria2,3. Interestingly, carotenoids not only are crucial in 58 

these organisms that can synthesize them, but also in animals and humans. Humans 59 

must obtain carotenoids in their diet because their body cannot synthesize them4,5. 60 

In plants, carotenoids are biosynthesized via isopentenyl pyrophosphate (IPP) 61 

produced from the methylerythritol phosphate (MEP) pathway6. Phytoene synthase 62 

(PSY) is considered to be a major rate-limiting enzyme of carotenoid biosynthesis 63 

pathway. The subsequent cyclization of all-trans-lycopene by lycopene ε-cyclase 64 

(LCYE) and/or lycopene β-cyclase (LCYB) leads to the formation of symmetric 65 

orange β- and α-carotene in the β-β and β-ε branch, respectively. Then, ε-carotene 66 

hydroxylase (ECH) and β-carotene hydroxylase (BCH) add hydroxyl moieties to the 67 

cyclic end groups to produce lutein from α-carotene and zeaxanthin from β-carotene7-
68 

9. The epoxidation of zeaxanthin then produces antheraxanthin and violaxanthin10, 69 

which are further converted by capsanthin-capsorubin synthase (CCS) into 70 

capsanthin and capsorubin, respectively11,12. Although the key enzymes involved in 71 

the carotenoid biosynthetic pathway have been extensively studied, the mechanism 72 

regulating carotenoid biosynthesis is still not well-explained. 73 

The plant NAC (NAM, ATAF1/2, and CUC2) protein family is involved in diverse 74 

biological processes, including lateral root formation, secondary cell wall synthesis, 75 

and vegetative organ and fruit development13,14. Overexpression of SlNAC1 76 

decreases the levels of β-carotene, lycopene, and total carotenoid, while increasing 77 

the lutein content in tomato (Solanum lycopersicum)14. In SlNAC4-RNAi transgenic 78 

fruits, the total carotenoid level was significantly reduced after the break (B) 79 

stage13,15. Similarly, in the B+3 and B+10 stages of the NAC transcription factor 80 

SlNAC3 mutant, nor-like1, carotenoid levels also significantly decreased16. On the 81 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T

D
ow

nloaded from
 https://academ

ic.oup.com
/hr/advance-article/doi/10.1093/hr/uhad010/7022300 by guest on 02 February 2023



4 

 

contrary, overexpression of SlNAC-NOR significantly accelerates the fruit ripening 82 

process and produces higher carotenoid levels17.  83 

Besides, the MYB transcription factors also are important in regulating 84 

carotenoid biosynthesis. Based on the number of MYB conserved domains, MYBs 85 

are divided into (1) R1- (including one MYB domain), (2) R2R3- (including two MYB 86 

domains), and (3) R1R2R3-type MYB (including three MYB domains) subgroups. At 87 

present, mostly R2R3-type MYBs are reported to regulate carotenoid biosynthesis. 88 

For example, overexpressing AdMYB7 causes the accumulation of carotenoids and 89 

chlorophyll in kiwifruit18. Conversely, downregulating the R2R3-MYB transcription 90 

factor RCP1 (Reduced carotenoid pigmentation 1) expression reduced carotenoid 91 

content in Mimulus lewisii flowers19. Overexpression of CrMYB68 (Citrus reticulate) 92 

negatively regulates the expression of NbBCH2 and NbNCED5 to suppress the 93 

transformation of α- and β-branch carotenoids in tobacco leaves20. Moreover, MYB 94 

transcription factors form complexes with other proteins to participate in pigment 95 

biosynthesis. In Medicago truncatula, the MtWP1-MtTT8-MtWD40-1 complex 96 

regulates flower pigmentation via the anthocyanin and carotenoid biosynthesis21.  97 

According to previous studies, STAY-GREEN (SGR) is an evolutionarily 98 

conserved chloroplast-targeted protein in higher plants which works in carotenoids 99 

biosynthesis, chlorophyll degradation and senescence22,23. Silencing the LeSGR1 100 

(Lycopersicon esculentum) expression inhibits chlorophyll degradation in the leaves 101 

and fruits of tomato. Interestingly, SlSGR1 regulates lycopene and β-carotene 102 

accumulation by interacting directly with SlPSY1, a key carotenoid biosynthesis 103 

enzyme gene24.  104 

Sweet potato (Ipomoea batatas (L.) Lam. [2n=B1B1B2B2B2B2 = 6x = 90]) provides 105 

carbohydrates and carotenoids for humans and is one of the most important food 106 

crops across the world. Sweet potato, especially the orange-fleshed cultivars, 107 

contains high levels of β-carotene, which could combat vitamin A deficiency25,26. In 108 

this study, we found that overexpression (OE) of IbNAC29 significantly increases the 109 

carotenoid content. We also demonstrated that IbNAC29 participates in the 110 
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carotenoid biosynthesis by forming a regulatory module with IbMYB1R1 (R1-type 111 

MYB) and IbAITR5. Moreover, IbAITR5 represses the transcription of IbSGR1. Our 112 

results further indicated that IbNAC29 might enhance this repression, thus resulting 113 

in the carotenoid accumulation.  114 

Results 115 

IbNAC29 is a potential candidate gene for regulating the carotenoid 116 

biosynthesis pathway 117 

Previously, we performed RNA sequencing analyses on sweet potato cultivar 118 

Weiduoli and its high-carotenoid mutant "HVB-3" (Fig. 1a) to identify the differentially 119 

expressed genes27. Among these genes, the expressions of three NAC transcription 120 

factor genes, including IbNAC29, IbNAC74, and IbNAC87, were upregulated in HVB-121 

327. As shown in Fig. 1b, IbNAC29 is homologous to the NAC transcription factor 122 

SlNOR-like1. Regulation of carotenoid biosynthesis by SlNOR-like1 in tomato has 123 

been reported recently16. Furthermore, IbNAC29 was widely expressed in the leaf, 124 

stem, and root tissues of HVB-3 (Fig. 1c). Quantitative real-time PCR (qRT-PCR) 125 

analysis showed mRNA level in the storage roots of HVB-3 was ~1.71- fold higher 126 

than Weiduoli, thereby showing its potential link with carotenoid biosynthesis (Fig. 127 

1d). Therefore, we selected IbNAC29 for subsequent analyses. 128 

The coding sequence of IbNAC29 was 849 bp and contained three exons and 129 

two introns, encoding a protein of 282 amino acids (Fig. 1e). Based on the NCBI’s 130 

Conserved Domains Database28, N-terminal region of IbNAC29 contains a highly 131 

conserved NAM DNA-binding domain (Fig. 1f). 132 

IbNAC29 is nuclear-localized and can function in transcriptional activation  133 

To further study the subcellular localization of IbNAC29, we expressed the IbNAC29-134 

GFP fusion protein in protoplasts. As a control, empty GFP plasmid was transfected 135 

into protoplasts. As shown in Fig 2, GFP itself was distributed in the nucleus and the 136 

cytoplasm as expected, whereas the fusion protein IbNAC29-GFP was nuclear-137 

localized (Fig. 2a). Furthermore, the position of green fluorescence from the 138 
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IbNAC29-GFP fusion protein merged with the red fluorescence from the nuclear 139 

marker ARF1-mCherry29, suggesting that IbNAC29 localizes to the nucleus.  140 

Next, we used the transient expression system to investigate whether IbNAC29 141 

acts as a transcriptional activator. We co-expressed the effector and reporter vectors 142 

in protoplasts, and quantified the luciferase activity after 16 h incubation. The results 143 

showed that the luciferase activity is significantly increased when IbNAC29 is co-144 

expressed (Fig. 2b), thus indicating that IbNAC29 is a transcriptional activator. 145 

Overexpression of IbNAC29 enhances carotenoid levels in the storage roots of 146 

sweet potato 147 

To further investigate whether IbNAC29 regulates carotenoids in sweet potato, we 148 

generated IbNAC29-OE plants by Agrobacterium-mediated transformation of sweet 149 

potato variety Lizixiang (Supplemental Fig. S1 and S2). After examining the IbNAC29 150 

mRNA levels in these plants using qRT-PCR, we selected three lines (OE-2, OE-7 151 

and OE-23) with the up-regulated IbNAC29 mRNA levels for further study 152 

(Supplemental Fig. S1). Cross-sectional flesh samples of the transgenic lines were 153 

slightly yellower and had orange spots relative to the wild type (WT) (Fig. 3a).  154 

Since carotenoids are stored in plastids30,31, we next analyzed the plastids in the 155 

storage roots of transgenic IbNAC29-OE using transmission electron microscopy 156 

(TEM). The number of carotenoid globules in the IbNAC29-OE plants was 157 

significantly increased than in the WT (Fig. 3a), suggesting the high levels of 158 

carotenoids accumulation in the storage roots of IbNAC29-OE plants. 159 

Sweet potato contains various carotenoids,  including  α-carotene, lutein, β-160 

carotene, zeaxanthin, capsanthin, violaxanthin, β-cryptoxanthin, echinenone, 161 

neoxanthin, antheraxanthin and capsorubin. Next, we determined the concentration 162 

of different carotenoids in the storage roots of IbNAC29-OE and WT plants. We 163 

found that the levels of α-carotene (0.0328-0.0403 μg/g DW), lutein (0.1816-0.2212 164 

μg/g DW), β-carotene (0.1512-0.2888 μg/g DW), zeaxanthin (0.1081-0.1558 μg/g 165 

DW), capsanthin (0.0082-0.0094 μg/g DW) and β-cryptoxanthin (0.8637-1.001 μg/g 166 
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DW) are significantly increased, respectively. While the levels of violaxanthin 167 

(0.0023-0.0040 μg/g DW) is decreased in the IbNAC29-OE plants (Fig. 3b-l). There 168 

is no significant difference in the level of capsorubin between IbNAC29-OE and WT 169 

plants. Eventually, total carotenoid content is significantly increased in the storage 170 

roots of transgenic plants compared with WT (Fig. 3m). 171 

Carotenoid biosynthesis-related genes are upregulated in IbNAC29-OE plants 172 

Next, we used qRT-PCR assays to determine the expression of carotenoid 173 

biosynthesis-related genes in IbNAC29-OE plants and WT at storage root expansion 174 

stage. The carotenoid biosynthesis pathway is shown in Fig. 4a. In this study, we 175 

observed elevated mRNA levels of IbDXS, one MEP pathway gene (Fig. 4b) and four 176 

carotene biosynthesis genes (IbGGPPS, IbPSY, IbLCYE and IbLCYB) (Fig. 4c-f).    177 

Previous research has shown that CYP97A (Cytochrome P450 monooxygenase) 178 

works synergistically with CYP97C to hydroxylate α-carotene into lutein32-34. Both 179 

IbCYP97A3 and IbCYP97C1 are elevated in IbNAC29-OE. Therefore, the 180 

upregulated IbCYP97A3 and IbCYP97C1 might lead to the lutein accumulation in 181 

IbNAC29-OE plants (Fig. 3c and 4g-h).  182 

Interestingly, we found increased zeaxanthin and capsanthin levels, but a 183 

decreased violaxanthin level. The expression of IbBCH, IbZEP and IbCCS was also 184 

activated in IbNAC29-OE. We thus proposed that the decreased violaxanthin level 185 

may be because of its conversion to capsanthin under the high IbCCS expression 186 

(Fig. 3e-g and 4i-k). Therefore, our results suggested that the upregulation of 187 

carotenoid biosynthesis genes causes the carotenoid accumulation in the storage 188 

roots of transgenic IbNAC29-OE sweet potato. 189 

IbNAC29 could not bind to the promoters of carotenoid biosynthesis-related 190 

genes 191 

When IbNAC29 was overexpressed in the sweet potato, the genes for carotenoid 192 

biosynthesis were significantly elevated in IbNAC29-OE. Next, we performed yeast 193 

one-hybrid (Y1H) experiment to investigated the potential relationship of IbNAC29 194 
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and the promoters of above genes . The promoter fragments of IbGGPPS, IbPSY, 195 

IbLCYE, and IbLCYB were independently amplified by PCR using genomic DNA as 196 

the template and cloned into the pLacZi2μ vector. The yeast activation domain (AD) 197 

was fused with the coding sequence of IbNAC29 to form the effector 42AD-IbNAC29 198 

construct. Both the reporter constructs and the effector 42AD-IbNAC29 were 199 

cotransformed into yeast. 42AD alone as a negative control. As shown in 200 

Supplemental Fig. S4, IbNAC29 protein did not bind to these promoters. These 201 

results remind us that IbNAC29 may indirectly influence carotenoid biosynthesis via 202 

other factors. 203 

IbNAC29 forms a regulatory module with IbMYB1R1 and IbAITR5 204 

To investigate the possible interacting partners of IbNAC29 involved in carotenoid 205 

biosynthesis, we screened the sweet potato yeast two-hybrid (Y2H) library. Among 206 

these potential interacting proteins, we identified an R1-type MYB1 protein 207 

IbMYB1R1. Previous studies have shown that R2R3-type MYB, along with other 208 

factors, form a regulatory complex which affects anthocyanin biosynthesis21,35,36. 209 

Through yeast two-hybrid library screening, we isolated a IbMYB1R1-interacting 210 

protein IbAITR5. IbAITR5 belongs to a novel family of transcription factors, working 211 

as a member of ABA-induced transcription repressors (AITRs). The Y2H assays 212 

revealed that although IbNAC29 and IbAITR5, individually interacted with IbMYB1R1, 213 

there was no interaction between IbNAC29 and IbAITR5 (Fig. 5a). Using the yeast 214 

three-hybrid (Y3H) assays, we also observed that IbNAC29, IbMYB1R1, and 215 

IbAITR5 apparently formed a regulatory module (Fig. 5b). These interactions among 216 

IbNAC29, IbMYB1R1, and IbAITR5 were verified in the leaf epidermal cells of 217 

Nicotiana benthamiana using bimolecular fluorescence complementation (BiFC) 218 

assays. We observed a sharp yellow fluorescence in the nucleus when IbNAC29-219 

nYFP or IbAITR5-nYFP was co-expressed with IbMYB1R1-cYFP, while negative 220 

controls showed no YFP fluorescence signal (Fig. 5c). Furthermore, we found that 221 

the IbMYB1R1 and IbAITR5 proteins were localized in the nuclei of the protoplasts 222 
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(Supplemental Fig. S5), which was consistent with the location of IbNAC29, thereby 223 

suggesting that IbNAC29, IbMYB1R1, and IbMYB1R1 may form a regulatory module 224 

and function in the nucleus. 225 

 Next, we used co-immunoprecipitation (co-IP) assays to investigate the 226 

IbNAC29-IbMYB1R1 and IbMYB1R1-IbAITR5 interactions in vivo. We isolated the 227 

total proteins co-expressed by IbMYB1R1-Myc with HA-IbNAC29 or HA-IbAITR5 in 228 

the leaf epidermal cells of Nicotiana benthamiana, and incubated them with anti-c-229 

Myc agarose beads. We detected HA-IbNAC29 and HA-IbAITR5 in the 230 

immunoprecipitated proteins, but not in the negative control (Fig. 5d-e). These 231 

experiments further indicated that IbMYB1R1 physically interacts with IbNAC29 and 232 

IbAITR5 in planta, confirming the previous results.  233 

Taken together, these results confirmed that IbNAC29 could interact with 234 

IbMYB1R1, which forms an intermediate bridge with IbAITR5 to potentially form the 235 

IbNAC29-IbMYB1R1-IbAITR5 regulatory module. 236 

IbAITR5 directly binds to the IbSGR1 promoter and represses its transcript 237 

activity 238 

We first examined the relative mRNA level of the SGR1-homologous gene IbSGR1 in 239 

IbNAC29-OE plants using qRT-PCR. qRT-PCR analysis revealed that relative 240 

IbSGR1 mRNA level was strongly reduced in the IbNAC29-OE plants (Supplemental 241 

Fig. S6a), suggesting that IbNAC29 may negatively regulate IbSGR1. 242 

To test the hypothesis, we conducted Y1H assays to explore the relationship 243 

between the IbNAC29-IbMYB1R1-IbAITR5 regulatory module and the IbSGR1 244 

promoter. Interestingly, we found that IbAITR5, rather than IbNAC29 and IbMYB1R1, 245 

directly binds to the IbSGR1 promoter (Fig. 6a). Then, we used the dual-luciferase 246 

reporter assays to assess the luciferase activity of IbSGR1 driven by the IbAITR5. 247 

These results revealed that when IbSGR1pro:LUC was co-transformed with IbAITR5, 248 

IbAITR5 inhibited the IbSGR1 promoter activity. Therefore, our data demonstrated 249 

that IbAITR5 represses the IbSGR1 promoter activity by binding to its promoter (Fig. 250 
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6b). 251 

Next, we used the electrophoretic mobility shift assay (EMSA) and chromatin 252 

immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) assays to 253 

validate whether IbAITR5 could bind to the IbSGR1 promoter. In the EMSA assay, 254 

IbAITR5-GST bound to a 28 bp fragment of IbSGR1 in vitro (Fig. 6c). Additionally, 255 

the ChIP-qPCR assays confirmed that IbAITR5 also binds in vivo to the IbSGR1 256 

promoter (Fig. 6d). Thus, our results collectively suggested that IbAITR5 represses 257 

IbSGR1 transcription by directly binding to its promoter. 258 

IbNAC29-IbMYB1R1-IbAITR5 regulatory module regulates carotenoid 259 

biosynthesis 260 

To further investigate how IbNAC29, IbMYB1R1, and IbAITR5 affected the 261 

transcriptional activity of IbSGR1, we conducted the dual-luciferase reporter assays. 262 

As shown in Fig. 7a, the luciferase activity remained unchanged when IbMYB1R1 263 

vector co-transient with IbAITR5 and IbSGR1pro vectors compared with IbAITR5 and 264 

IbSGR1pro vector co-transient in protoplasts. However, in the presence of 265 

IbMYB1R1, IbNAC29 enhanced the inhibitory activity of IbAITR5 on the IbSGR1 266 

promoter (Fig. 7a). 267 

It has been reported that SlSGR1 influences the SlPSY1 expression pattern in 268 

tomato24. Furthermore, the dual-luciferase assays revealed that the IbSGR1 also 269 

influences the expression of IbPSY (Fig. 7b). The repression of IbPSY1 gene in the 270 

in the presence of IbSGR1 expression in accordance with previous studies24. 271 

Therefore, our results suggest that the IbNAC29-IbMYB1R1-IbAITR5 regulatory 272 

module potentially regulates carotenoid biosynthesis via the regulation of IbPSY1. 273 

Discussion 274 

Carotenoids are tetraterpenoids molecules that play pivotal roles in photosynthesis, 275 

pigmentation and development. Despite an in-depth mechanistic basis for 276 

understanding the carotenoid biosynthesis, relatively little is known about how this 277 

pathway is transcriptionally regulated. Previously, we conducted the transcriptome 278 
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database of differentially expressed genes between the Weiduoli and its high-279 

carotenoid mutant HVB-327. Among these genes, NAC transcription factors IbNAC29, 280 

IbNAC74 and IbNAC87 were upregulated in HVB-3. In this study，we selected and 281 

characterized IbNAC29 gene. Transgenic experiments demonstrated overexpression 282 

of IbNAC29 increased the levels of various carotenoids in the storage roots, including 283 

α-carotene, lutein, β-carotene, zeaxanthin, and capsanthin (Fig. 3).  284 

Indeed, the carotenoid biosynthetic gene expression (IbDXS, IbGGPS, IbPSY, 285 

and etc) was also up-regulated in IbNAC29 transgenic plants. This could potentially 286 

explain why carotenoid accumulation is elevated. Previous reports have suggested 287 

that overexpression of PmDXS and IbGGPS increased the carotenoid content in 288 

Arabidopsis37,38. Furthermore, overexpressing LCYE elevates the carotenoid lutein 289 

level in Arabidopsis leaves39. Also, overexpression of IbLCYB2 increases the 290 

carotenoid content in the sweet potato’s storage roots40. In plants, the SGR gene 291 

encodes the key enzyme for chlorophyll degradation23. In tomato, SlSGR1 reportedly 292 

regulates chlorophyll degradation22,24. Silencing SlSGR1 inhibits chlorophyll 293 

degradation, resulting in the retention of a green phenotype. As a matter of fact, 294 

SlSGR1 regulates the lycopene accumulation in tomato by directly inhibiting the 295 

activity of a key carotenoid biosynthesis enzyme, SlPSY124. Overexpression of 296 

CsPSY enhances carotenoid accumulation in Hongkong kumquat 41. Both CsSGRa 297 

and CsSGRb interact with CsPSY1 to inhibit the citrus carotenoid biosynthesis, 298 

chlorophyll degradation and carotenoid biosynthesis, which are highly conserved 299 

processes in plants42. Similarly, the overexpression of CsPSY enhances carotenoid 300 

accumulation in Hongkong kumquat41. Therefore, our result suggested that the 301 

upregulation of carotenoid biosynthesis genes might cause the accumulation in the 302 

carotenoids. 303 

 Previous studies have reported that the tomato NAC transcription factor SlNOR-304 

like1 directly binds to the SGR1 promoter, thus regulating fruit ripening and 305 

carotenoid accumulation16. However, Y1H assay indicated IbNAC29 could not 306 

directly bind to the promoters of carotenoid biosynthesis-related enzymes. To explore 307 
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the possible mechanism of IbNAC29 involved in carotenoid biosynthesis, we 308 

screened the sweet potato yeast two-hybrid (Y2H) library. Among these potential 309 

interacting proteins, we identified an R1-type MYB1 protein IbMYB1R1. Previous 310 

studies have shown that R2R3-type MYB, along with other factors, form a regulatory 311 

complex which affects anthocyanin biosynthesis21,35,36. Through yeast two-hybrid 312 

library screening, we isolated a IbMYB1R1-interacting protein IbAITR5. In our study, 313 

the results showed that IbAITR5 could directly binds to the IbSGR1 promoter, 314 

inhibiting the expression of the IbSGR1 (Fig. 6). The mRNA level of IbSGR1 is down-315 

regulated in IbNAC29-OE, which is consistent with its negative role in carotenoid 316 

accumulation. Although we detected enhanced carotenoids accumulation in the 317 

IbNAC29-OE storage roots (Fig. 3), we did not find any direct interaction between 318 

IbNAC29 and the IbSGR1 promoter (Fig. 6a). Therefore, our results suggested that 319 

IbNAC29 might have a different regulatory mechanism with SlNOR-like1, possibly 320 

because they belong to different clades in the evolutionary tree.  321 

Through Y3H, EMSA, ChIP-qPCR and dual-luciferase assay analyses, our study 322 

demonstrated that the IbNAC29-IbMYB1R1-IbAITR5 regulatory module mediates the 323 

carotenoids biosynthesis via protein–protein interactions to regulate the downstream 324 

target gene expression in sweet potato. It has been reported that AITRs are 325 

transcription repressors in plants43, and we found that the IbAITR5 mRNA level in the 326 

IbNAC29-OE plants was upregulated (Supplemental Fig. S6b). Thus, we proposed 327 

that IbNAC29 enhances the inhibitory activity of IbAITR5 by affecting its 328 

transcriptional activity. This leads to reduce the expression of the IbSGR1 (Fig. 2a 329 

and 7a), resulting in further alleviation of the inhibition of IbSGR1 on mRNA level of 330 

the key carotene biosynthesis gene IbPSY. Up-regulated expression of IbPSY might 331 

lead to enhanced carotenoids accumulation in the storage roots (Fig. 8).  332 

Altogether, our findings unveil the mechanism underlying the regulation of the 333 

carotenoids accumulation and provide new insights for the genetic improvement in 334 

the sweet potato. To further understand the mechanisms that regulate carotenoid 335 

biosynthesis in staple crops, we will further identify the direct targets of IbNAC29 by 336 
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combining transcriptome analysis with chromatin immunoprecipitation analysis in the 337 

future. Moreover, we will attempt to use the CRISPR/Cas9-based gene editing 338 

approach to further understand its role in the development of sweet potato. 339 

Materials and methods 340 

Plant materials and growth conditions 341 

Sweet potato cultivar Weiduoli with orange-fleshed and its high carotenoid mutant 342 

“HVB-3” were used for RNA sequencing analyses. Sweet potato cultivar Lizixiang 343 

was used as the recipients for Agrobacterium-mediated transformation，which is a 344 

pale-yellow flesh with low carotenoid content. Transgenic test-tube seedlings were 345 

grown on Murashige and Skoog medium at 28 °C with 13-h-light/11-h-dark cycle. The 346 

transgenic plants were cultivated in the field of the experimental stations of China 347 

Agricultural University adhered to normal agricultural practice.  348 

Gene identification and sequence analysis 349 

Total RNA was extracted using TRIzol reagent (Invitrogen). Complementary DNAs 350 

(cDNA) were obtained using HiFiScript gDNA Removal cDNA Synthesis Kit (CwBio) 351 

according to the manufacturer’s protocol. The RACE (rapid amplification of cDNA 352 

ends) experiment was used to obtain the full-length cDNA sequence of IbNAC29. 353 

According to the EST sequence obtained from previous studies27, the coding 354 

sequences of IbMYB1R1, IbAITR5, and IbSGR1 were obtained from Lizixiang using 355 

the homologous cloning method. DNAMAN software, MEGA 7.0 software, and the 356 

Splign tool were used to analyze amino acid sequence alignments, exon-intron, and 357 

phylogenetic relationships, respectively. 358 

Subcellular localization analysis 359 

The open reading frames of IbNAC29, IbMYB1R1 and IbAITR5 without the stop 360 
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codon were inserted into the pCAMBIA1300-35S-GFP vector. The recombinant 361 

vector pBI121-ARF-mCherry containing a nuclear marker ARF1 was co-transformed 362 

with pCAMBIA1300-35S-IbNAC29-GFP, pCAMBIA1300-35S-IbMYB1R1-GFP, and 363 

pCAMBIA1300-35S-IbAITR5-GFP, respectively. Meanwhile, pCAMBIA1300-35S-GFP 364 

and pBI121-35S-ARF1-mCherry were co-transformed into protoplasts as a control. 365 

After growing for 16 h, the fluorescence signals of GFP and mCherry were visualized 366 

by a confocal fluorescence microscopy (Olympus, Tokyo, Japan) under excitation 367 

wavelengths of 488 nm and 546 nm, respectively. 368 

Sweet potato transformation and qRT-PCR analysis 369 

The embryogenic suspension cultures of Lizixiang were transformed with the 370 

pCAMBIA1300-35S-IbNAC29-GFP vector via Agrobacterium-mediated 371 

transformation44. The transgenic sweet potato plants were selected using hygromycin 372 

as a selection marker. The plants were transferred to a greenhouse, planted in the 373 

nutrient vegetative soil, and then transplanted to the field for phenotype observation. 374 

The IbActin gene of sweet potato (AY905538) was used as the internal control for 375 

expression analysis by qRT-PCR assays45,46. The mRNA levels of genes were 376 

calculated by comparative CT method47. The experiment was conducted using three 377 

biological replicates consisting of pools of three plants. Values are means ± SD of 378 

three biological repeats. 379 

Measurement of carotenoid contents 380 

Carotenoids were extracted as described previously37. Three independent storage 381 

roots from each freshly harvested WT and IbNAC29-OE transgenic plants were 382 

mixed, respectively. Carotenoids and the relative contents were measured as 383 

previously described48.  384 ORIG
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Transmission electron microscope (TEM) 385 

The storage roots of IbNAC29-OE and WT were fixed as previously described40. The 386 

number of carotenoid globules was observed using TEM (JEM-1230, Tokyo, Japan).  387 

Yeast assays 388 

In the Y1H assay, the open reading frames of IbNAC29, IbMYB1R1, and IbAITR5 389 

sequences were separately cloned into the pB42AD vector. The promoter sequences 390 

of IbGGPPS, IbPSY, IbLCYB, IbLCYE, and IbSGR1 genes from Lizixiang were 391 

cloned separately into the pLacZi2μ vector. In short, various LacZ reporter plasmids 392 

were cotransformed with the pB42AD fusion constructs into EGY48 yeast strain. The 393 

pLacZi2μ reporter and pB42AD were co-transformed as negative controls. 394 

Transformants were grown on SD/-Trp-Ura dropout plates containing 5-bromo-4-395 

chloro-3-indolyl-β-D-galactopyranoside (X-Gal) for blue color development. 396 

Y2H assay was done according to the Matchmaker™ Gold Yeast Two-Hybrid 397 

System User Manual (Clontech). The coding sequences of IbNAC29, IbMYB1R1, 398 

and IbAITR5 were cloned into either the bait vector pGBKT7 or the prey vector 399 

pGADT7. Transformed Y2H-Gold yeast cells were patched onto the SD/-Leu/-Trp 400 

and SD/-Leu/-Trp/-His/-Ade +6 mM 3AT plates and grown at 30°C.  401 

Y3H assay was conducted as previously described49. The open reading frames 402 

of IbNAC29 and IbMYB1R1 were cloned into the pBridge vector, while the coding 403 

sequence of IbAITR5 was cloned into the pGADT7 vector. The combinations of 404 

pBridge-IbNAC29-IbMYB1R1 with pGADT7-IbAITR5, pBridge-IbNAC29-IbMYB1R1 405 

with pGADT7, and pBridge with pGADT7-IbAITR5 were co-transformed into yeast. 406 

The combinations containing the empty pBridge or pGADT7 vectors were used as 407 

negative controls. Transformed Y2H-Gold yeast cells were patched on the SD/-Leu/-408 

Trp and SD/-Leu/-Trp/-His/-Met +6 mM 3AT plates and grown at 30°C. 409 
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BiFC assay 410 

Empty pSPYNE-35S or the pSPYCE-35S vector cloned with the IbNAC29, 411 

IbMYB1R1, and IbAITR5 coding sequences were transformed into the Agrobacterium 412 

tumefaciens strain EHA105. Combinations of pSPYNE and pSPYCE vectors, 413 

together with P19, were infiltrated into the Nicotiana benthamiana leaf epidermal 414 

cells. The YFP signal was observed by using a laser confocal scanning microscope 415 

at an excitation wavelength of 488 nm after 48 h growth (Olympus, Tokyo, Japan). 416 

Co-IP assay 417 

Co-IP assay was performed as mentioned previously46. The anti-HA primary antibody 418 

(MilliporeSigma), anti-Myc primary antibody (MilliporeSigma), Goat anti-mouse IgG 419 

secondary antibody (Light chain specific, Easybio), and Anti-c-Myc agarose beads 420 

(MilliporeSigma) were used to detect samples. 421 

Dual-luciferase assay  422 

Rice shoot protoplasts were isolated and used for the dual-luciferase assays, as 423 

described previously50. For the transcriptional activity assay, the empty pBD vector 424 

was used as the negative control to measure the transcriptional activity of IbNAC29. 425 

For the DNA-promoter interaction assay, the IbNAC29, IbMYB1R1, IbAITR5, and 426 

IbSGR1 coding sequences were cloned separately into the pGreenII 62-SK vector. 427 

The IbSGR1 and IbPSY promoters were cloned separately into the pGreenII0800-428 

LUC vector. Firefly luciferase (LUC) and Renilla luciferase (REN) activity levels were 429 

measured using a dual-luciferase reporter assay system (Promega, USA). Four 430 

technical replicates were conducted in the experiments. 431 

EMSA 432 

EMSA was performed according to the manufacturer’s instructions (Thermo Fisher 433 

Scientific, USA). Glutathione beads purified recombinant GST-labeled IbAITR5 434 
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protein expressed in E. coli Transetta (DE3). The NACRS element containing biotin-435 

labeled probes synthesized by Tsingke (Beijing) were used as binding probes, while 436 

unlabeled probes were used as competing probes. 437 

ChIP-qPCR analysis  438 

The ChIP assay was carried out as described previously46. The plants of 439 

pSuper1300-IbAITR5-GFP were cut into pieces and immediately fixed with 1% (v/v) 440 

formaldehyde solution. Next, the samples were ground into fine powders under liquid 441 

nitrogen. StepOnePlus™ was used to analyze the enrichment of immunoprecipitated 442 

DNA. IbSGR1 promoter P2 fragment contained a NACRS element (sequence is 443 

ACGTGA), while P1 having no NACRS element served as the negative control. Four 444 

technical replicates were conducted in the experiments using. All the above primer 445 

sequences are shown in Supplemental Table S1. 446 
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Figure 1. Molecular characterization of IbNAC29. a Phenotype of orange-fleshed sweet potato 

cultivar Weiduoli and its mutant HVB-3 with high carotenoid content. b Phylogenetic analysis of the 

NAC protein in Arabidopsis and sweet potato (IbNAC29, IbNAC74, IbNAC87) was performed with 

1000 bootstrap iterations using the neighbor-joining method in MEGA 7.0. The numbers on the tree 

nodes represent 1000 repeated boot values. IbNAC29, IbNAC74, and IbNAC87 from carotenoid-

related transcriptome data are marked with red stars. SlNOR-like1, a reported NAC transcription 

factor linked to carotenoid biosynthesis in tomato, is marked with a blue circle. c Relative mRNA level 

of IbNAC29 in different tissues of 4-week-old in vitro–grown HVB-3 plants. IbActin was used as the 

internal control. d Relative mRNA level of IbNAC29 in the storage roots of Weiduoli and HVB-3 at 

storage root expansion stage. IbActin was used as the internal control. Error bars indicate SD (n = 3). 

**indicates P < 0.01, respectively, by Student’s t-test. e Gene structure analyses of IbNAC29. Grey 

boxes indicate the untranslated region, including 5’ untranslated regions (UTRs)  and 3’ UTR. Yellow 

boxes and lines represent exons and introns, respectively. f Multiple sequence alignment of NAC29 

from different species. Plant species include Arabidopsis thaliana (At), Ipomoea nil (In), Nicotiana 

tabacum (Nt), Capsicum annuum (Ca), Solanum tuberosum (St) and Vitis vinifera (Vv). The NAM 

domain is represented by black lines.  
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Figure 3 Overexpression of IbNAC29 increases the carotenoid content in the storage roots of sweet potato during the maturity 

stages. a Storage roots’ transverse sections (up), Bar = 1 cm; The carotenoid globules (dark grey) are shown in the electron 

microscopy images (down), Bar = 500 nm. Arrows indicate the carotenoid globules. b-l Levels of α-carotene, lutein, β-carotene, 

zeaxanthin, capsanthin, violaxanthin, β-cryptoxanthin, echinenone, neoxanthin, antheraxanthin, and capsorubin in the storage 

roots of WT and transgenic plants, respectively. m Total carotenoid content of WT and transgenic plants. Error bars indicate SD 

(n = 3). * and ** indicate a significant difference from that of WT at P < 0.05 and P < 0.01, respectively, by Student’s t-test. 
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Figure 4 Carotenoid biosynthetic pathway and expression levels of carotenoid biosynthetic-related genes in the storage 

roots of IbNAC29-OE plants. a General carotenoid biosynthetic pathway in plants. b MEP pathway gene, IbDXS, for 

carotenoid precursor supply. c-f Carotene biosynthetic genes, including IbGGPPS, IbPSY, IbLCYE and IbLCYB. g-k 

Xanthophyll biosynthetic genes, including IbCYP97A3, IbCYP97C1, IbBCH, IbZEP and IbCCS. IbActin was used as the 

internal control. The transcript level in WT was set as control. Error bars indicate SD (n = 3). * and ** indicate a 

significant difference from that of WT at P < 0.05 and P < 0.01, respectively, by Student’s t-test. 
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Figure 5 Interactions between IbNAC29, IbMYB1R1, and IbAITR5. a Interactions among IbNAC29, IbMYB1R1 and IbAITR5 by Y2H 

assays. b Y3H assays detected the interactions between IbNAC29, IbMYB1R1, and IbAITR5. c Confirmation of the interaction 

between IbNAC29 and IbMYB1R1, IbMYB1R1 and IbAITR5 by BiFC, as indicated by the yellow fluorescent signal. Bar = 50 μm. d 

and e  co-IP assays showing that IbMYB1R1 interacts with IbNAC29 (d) and IbAITR5 (e) in vivo. Total proteins from Nicotiana 

benthamiana leaf cells expressing IbMYB1R1-Myc, HA-IbNC29 and HA-IbAITR5 were extracted and incubated with anti-Myc 

magnetic beads. Total extracts before (input) and after IP were detected with anti-HA and anti-Myc antibodies. 
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Figure 6 Interactions of IbAITR5 with the IbSGR1 promoter. a Y1H assay showing that IbAITR5 binds to the promoter of IbSGR1. 

Yeast cells containing IbSGR1pro:LacZ were transformed with IbNAC29, IbMYB1R1 and IbAITR5 fused with the 42AD and grown 

on medium containing X-Gal. Coexpression of 42AD/LacZ, 42AD- IbNAC29/LacZ, 42AD- IbMYB1R1/LacZ, 42AD-IbAITR5/LacZ, 

and 42AD/IbSGR1pro:LacZ was used as the negative controls. b IbAITR5 inhibited the promoter activity of IbSGR1 determined by 

the dual-luciferase assays in protoplasts. Relative activity of the IbSGR1 promoter was represented by the LUC/REN ratio. “+” and 

“−” indicated presence and absence, respectively. Error bars indicate SD (n = 4). Ordinary one-way ANOVA multiple comparison, 

with different letters indicating the statistically significant differences at P < 0.01. c EMSA showing that IbAITR5 binds to an 

NACRS element of the IbSGR1 promoter. The recombinant IbAITR5-GST protein retarded the shift of the labelled probes; 150× 

indicated adding excess non-labelled probes as competitors. “+” and “−” indicated presence and absence, respectively. d ChIP-

qPCR analysis showed IbAITR5 could bind to the IbSGR1 promoter in the chromatin immunoprecipitated with an anti-GFP 

antibody from the 35S:IbAITR5-GFP plants. AITR5-OE-IgG, no antibody control samples. The NACRS element in segment P2 

was represented by an arrow. Segment P1 was used as the negative control. Error bars indicate SD (n = 4). ns, no significance. ** 

indicates P < 0.01, as determined by Student’s t-test analysis. 
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Figure 7 Effects of IbNAC29, IbMYB1R1, and IbAITR5 and their complexes on downstream genes. a IbNAC29 

enhanced the inhibitory activity of IbAITR5 on the downstream IbSGR1pro via IbMYB1R1 in the protoplasts. “+” 

and “−” indicated presence and absence, respectively. Error bars indicate SD (n = 4). Ordinary one-way 

ANOVA multiple comparison, with different letters indicating the statistically significant differences at p < 0.05. b 

IbSGR1 inhibited the IbPSY promoter activity in protoplasts. “+” and “−” indicated presence and absence, 

respectively. Error bars indicate SD (n = 4). Ordinary one-way ANOVA multiple comparison, with different letters 

indicating statistically significant differences at p < 0.01. 
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Figure 8 Proposed model of how IbNAC29 regulates carotenoid biosynthesis. IbNAC29, IbMYB1R1, and IbAITR5 form a 

regulatory module. IbAITR5 binds to and represses the promoter activity of IbSGR1. Elevated levels of IbNAC29 enhance 

the IbAITR5-mediated inhibition of IbSGR1 activity, reducing the inhibition of IbPSY gene expression and increasing the 

accumulation of carotenoids. 
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